ON THE METABOLISM OF SOME AROMATIC NITRO-COMPOUNDS BY DIFFERENT SPECIES OF ANIMAL

PART I. SOME FACTORS INFLUENCING THE ELIMINATION OF 4:6 DINITRO-0-CRESOL FROM THE BLOOD OF THE RAT

BY E. KING and D. G. HARVEY

From the Department for Research in Industrial Medicine, Medical Research Council, Hampstead

Received April 15, 1954

INTRODUCTION

KING and Harvey¹ have shown that the rat, the rabbit and man eliminate dinitro-o-cresol at widely differing rates. This observation suggested that further work should be carried out to investigate, first, the influence of various factors, for example, age, weight, sex and environmental temperature on the elimination rate from the blood of some commonly used laboratory animal, and secondly, the elimination of this and analogous nitro-compounds by different species of animal.

The present communication reports the results of the first of these investigations, namely, the effect of some common variables on the elimination of dinitro-o-cresol by the rat.

EXPERIMENTAL

The methods employed were essentially similar to those described by King and Harvey¹. Hooded rats of the same strain were used throughout. Statistical analysis for variance, and the method employed for the determination of regression lines (b) were essentially as described by Emmens.²

RESULTS

These are given in Tables I and II and in Figure 1. Table I summarises the effects of various common factors on the slope value b. This shows that the decay of dinitro-o-cresol from the blood is exponential and that the range of 17 values is -0.010 to -0.022. Table II compares values of b following tail bleeding and cardiopuncture (after ether anæsthesia) methods of obtaining blood, and demonstrates that the former method results in values of b that are about 30 per cent. smaller than the latter.

Figure 1 is a diagrammatic representation of the results in terms of the extreme limits of time necessary to eliminate dinitro-o-cresol almost completely from the blood of the rat when the initial blood level is 50 to $60 \ \mu g./g.$

DISCUSSION

The overall range of elimination rates derived from 17 experiments is -0.010 to -0.022, or 120 per cent. variation. This is equivalent to saying that an initial blood level of about 60 μ g./g. will be eliminated almost completely from the blood in 82 to 182 hours (Fig. 1).

However, this range includes at least 3 abnormal variables, namely,

OD OF RATS	t. e of en lue) Remarks	All doses given at normal temperature, i.e., 18° to 20° C and relative humidity 50 to 60 per cent.	25° to 30°C and increasing relative humidity 37°C and relative humidity 50 per cent. Pretreated at 37°C and relative humidity 50 per cent. for 7 for 7		Divided into 3 groups (serials 13, 14, 15) of 20 each 1 × 15 mg/kg, of methyl thiouracil by intraperitoneal	injection 3 × 15 (1 daily) thiouracil by intraperitoneal injection Control-No methylthiouracil	
EFFECT OF VARIOUS FACTORS ON THE ELIMINATION OF DINITRO-O-CRESOL FROM THE BLOOD OF RATS	Per cent. difference of b between pairs. (Based on lower value)	- 7 - 53 - 30 - 12	- 0 - 7 - 40		3	30 ² 6	ii.
	$b\pm \mathop{\mathrm{SE}}\limits_{(a)}b$	$\begin{array}{c} -0.010 \pm 0.0004 \\ -0.011 \pm 0.0004 \\ -0.017 \pm 0.0001 \\ -0.013 \pm 0.0001 \\ -0.013 \pm 0.0003 \\ -0.019 \pm 0.0008 \\ -0.019 \pm 0.0008 \\ \end{array}$	$\begin{array}{c} - & 0.010 \pm 0.0009 \\ - & 0.011 \pm 0.0005 \\ - & 0.011 \pm 0.0005 \\ - & 0.011 \pm 0.0005 \\ - & 0.014 \pm 0.0007 \end{array}$	$\begin{array}{c} - \ 0.0011 \pm \ 0.003 \\ - \ 0.013 \pm \ 0.0005 \\ - \ 0.013 \pm \ 0.0005 \\ - \ 0.018 \pm \ 0.0005 \\ \end{array} > -$	- 0.018 ± 0.0009	$- \begin{array}{c} - 0.022 \pm 0.0009 \\ - 0.017 \pm 0.0008 \end{array}$	NoreSerials 6, 13, 14 and 15 bled by cardiopuncturethe remainder by tail
	Mode of administration	Oral " Intraperitoneal inj."	Aerosol Intraperitoneal inj.	Oral ", ", "Intraperitoneal inj.	Intraperitoneal inj.	"	bled by cardiopunct
	Dose mg./kg.	2 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 2 2 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 2 3	$ \begin{vmatrix} a1 & conditions \\ 2 & mg.(cu.m/5 & hrs. \\ 1 & \times 3 \\ 1 & \times 10 \\ 1 & \times 10 \end{vmatrix} $		1 × 15		ials 6, 13, 14 and 15
	Number of animals	400040	Environmen 6 6 6	<u>جي</u>	ylthiouracil 60 20	20	NoteSer
	Weight g.	150-200 " 350-400 40-50	inistration and 150-200		pressant-Meth 150-200		
EFFEC	Description of factor	(A) Sex and Size Female Female Mate Female Large $(\vec{\sigma} + \vec{\varphi})$ Small $(\vec{\sigma} + \vec{\varphi})$	(B) Mode of Administration and Environmental conditions Fernale $150-200$ 6 2 mg./cu.ml/ Male 0.1×15 6 1 × 10 Male 0.1×10^{-200} 6 1 × 10 Male 0.1×10^{-200}	Mixed ($\vec{\delta} + \vec{\varphi}$) Mixed ($\vec{\delta} + \vec{\varphi}$)	(C) Metabolic Depressant—Methylthiouracii Mixed $(3 + 2)$ 150–200 60 20	-	
	Serial number		r 86 0	11 (a) 12 (b) (b)	13	14 15	

10044 **TABLE I**

1000 5 Currinto ac no

E. KING AND D. G. HARVEY

METABOLISM OF AROMATIC NITRO-COMPOUNDS. PART I

high environmental temperatures and relative humidities and the effect of a metabolic depressant. Comparison of some smaller sub-groups of values indicates that the differences are less. For example, the values of b for series 1, 2, 11b and 12a following oral administration are -0.01, -0.011, -0.015, -0.013 (mean -0.0124 ± 0.001), and for serials 3, 4, 5, 11a and 12b following intraperitoneal injection are -0.017, -0.013, -0.017, -0.011 and -0.018 (mean -0.015 ± 0.003).

TABLE II

EFFECT OF VARIATION OF MODE OF OBTAINING BLOOD ON THE ELIMINATION OF DINITRO-*o*-cresol by the rat

32 hooded male rats; 83 to 117 g., mean 102 g. \pm 1-9, given a single dose of 15 mg./kg, by intraperitoneal injection. They were then divided into 2 groups; (A) of 6 for tail bleeding, and the remaining 28 (B) for cardiopuncture under ether anæthesia. These animals were killed after the blood samples were obtained. GROUP A—TAIL BLEEDING

GROUP A-TAIL BLEEDING										
Individual Analysis										
Rat No. 1 2 3 4 5 6	$\begin{array}{r} - 0.0179 \pm 0.00 \\ - 0.0167 \pm 0.00 \\ - 0.0145 \pm 0.00 \\ - 0.0171 \pm 0.00 \end{array}$	-		Mean slope $b = -0.0158 \pm 0.00064$						
Block Analysis $\bar{x} = 37$ $\bar{y} = 0.92895$										
	S. squares	D.F.	Mean square	F.						
Between Times Linear Regression Departures Within Times	3·92648 3·91544 0·01104 0·10085	3 1 2 20	1·30883 3·91544 0·00552 0·005	262 783 1						
From this $b \pm SE b = -0.0158 \pm 0.00064$										
GROUP BCARDIOPUNCTURE										
Block Analysis										
$\bar{x} = 37, \bar{y} = 0.08920958$										
	S. squares	D.F.	Mean square	F.						
Between Times Linear Regression Departures Within Times	7·14692 7·00081 0·14611 1·04110	3 1 2 20	2·3823 7·00081 0·07306 0·05206	45 134 1·4						
From this $b \pm SE = -0.021 \pm 0.0018$										
From this observation it can be calculated that:										
$b_{\mathbf{B}}$ is 31 per cent. greater (faster) than $b_{\mathbf{A}}$										

 $\sqrt{\overline{\operatorname{SE}}\,b_{\mathrm{A}} + \operatorname{SE}\,b_{\mathrm{B}}} = 0.0018$, or

the difference between b_A and b_B is significant.

Two general conclusions can be made from these observations. First, that variations such as sex, magnitude and frequency of the dose of dinitro-o-cresol do not have any very marked effects on its elimination rate. Secondly, that any of the values of b in the smaller ranges or even in the complete range will permit at least a semi-quantitative comparison with values obtained under similar conditions for other species of animal, e.g., the rabbit (King and Harvey¹).

The methods employed in administering dinitro-o-cresol and in collecting the blood gave different results. Up to the present no theory can be advanced to explain why b values calculated from concentrations

in blood samples obtained by cardiopuncture following intraperitoneal injection are significantly greater (elimination rate more rapid) than those obtained by oral administration or by inhalation.

Certain practical aspects of these experiments have a bearing on the design of toxicological assays. Obviously there is considerable value in determining some index of the elimination rate of a toxic material, and it is essential to design experiments that will embody as many natural conditions of environment and of exposure as possible. Clearly it is better to administer a substance *via* the alimentary canal or through the lungs and to obtain blood by tail bleeding than to adopt the less natural

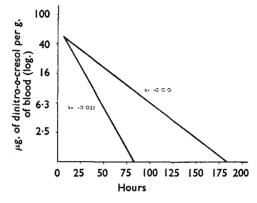


FIG. 1. Elimination of dinitro-o-cresol by the rat, range values of b.

procedures already referred to. Of necessity cardiopuncture may have to be employed, for example, if growing rats or small animals (for example, mice) are used, but such a procedure will involve a greater waste of animal life. By use of a few (for example, 6) animals for some preliminary experiments, considerable information can be obtained on elimination rates from the blood. There is no doubt that the results obtained will give some guide in assessing any possible accumulation of the substance in the animal following repeated exposures.

Several facts emerge from this study which may have some practical applications in maintaining safe conditions for spray operators and others handling dinitro-o-cresol. First, it is clear that a sudden increase in the environmental temperature and in the relative humidity is unlikely to cause any marked changes in the elimination rate. In fact the actual rates of elimination of 2 groups of rats given 5 and 10 mg./kg. dinitro-o-cresol are identical (-0.01). This value is numerically the lowest of the range, and therefore represents the slowest rate of elimination. Secondly, acclimatisation to these two environmental factors results in a somewhat faster elimination rate and one that is more comparable with that obtained under normal temperatures and humidities. The exacerbating effect of high environmental temperatures on the action of dinitro-o-cresol is well known (Bidstrup and Payne⁴; Parker, Barnes and Denz⁴;

King and Harvey⁵), but it has been demonstrated (King and Harvey⁵) that heat does not alter significantly the highest blood concentration in intoxicated animals.

These observations add further emphasis for the need for maintaining the strictest safety measures among men handling dinitro-o-cresol, especially in hot weather. Not only does heat cause an increase in toxicity but it fails to assist its elimination from the blood. Thirdly. methylthiouracil has been suggested as a therapeutic agent in reducing high metabolic rates caused by excessive doses of dinitro-o-cresol (Siedek and Hoffman Credner⁶). The present studies indicate that the elimination rate from man is unlikely to be altered greatly by the employment of methylthiouracil. In other words it is at all times essential to encourage the natural elimination from man by removing him from exposure once early toxic symptoms appear (Bidstrup, Bonnell and Harvey⁷), and by carrying out the recognised treatment, including bedrest in cool conditions, on persons who are seriously poisoned (Pollard and Filbee8).

SUMMARY

1. Elimination rates of dinitro-o-cresol from the blood of hooded rats have been determined under normal and abnormal (high environmental temperature, metabolic depressant) conditions. The effects of varying the methods of administration and of obtaining the blood have also been studied. Seventeen values of b ranged from -0.010 to -0.022.

2. Elimination rates are faster when dinitro-o-cresol is administered by intraperitoneal injection than by mouth or by inhalation of an ærosol, and when blood is obtained by cardiopuncture rather than by tail bleeding.

3. Sudden application of high environmental temperatures to animals poisoned by dinitro-o-cresol caused a slight slowing of the elimination rate. Acclimatisation for 7 days under the same conditions resulted in a faster elimination rate.

Our thanks are due to Miss Jean Peal for her constant and reliable assistance, and to Miss Audrey Mackrill and Miss June Welsher for help with the animals.

References

- King and Harvey, Biochem. J., 1953, 53, 196. 1.
- Emmens, Principles of Biological Assay, 1st Ed., Chapman and Hall, London. Bidstrup and Payne, Brit. med. J., 1951, 2, 16. Parker, Barnes and Denz, Brit. J. industr. Med., 1951, 8, 226. 2.
- 3.
- 4.
- 5.
- King and Harvey, *Biochem. J.*, 1953, **53**, 185. Siedek and Hoffman-Credner, *Klin. Med.* (Wien), 1949, **10**, 361. 6.
- Bidstrup, Bonnell and Harvey, Lancet, 1952, 262, 794. 7.
- 8. Pollard and Filbee, *ibid.*, 1951, 261, 618.